Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2575, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142597

RESUMO

Noradrenergic and mesenchymal identities have been characterized in neuroblastoma cell lines according to their epigenetic landscapes and core regulatory circuitries. However, their relationship and relative contribution in patient tumors remain poorly defined. We now document spontaneous and reversible plasticity between the two identities, associated with epigenetic reprogramming, in several neuroblastoma models. Interestingly, xenografts with cells from each identity eventually harbor a noradrenergic phenotype suggesting that the microenvironment provides a powerful pressure towards this phenotype. Accordingly, such a noradrenergic cell identity is systematically observed in single-cell RNA-seq of 18 tumor biopsies and 15 PDX models. Yet, a subpopulation of these noradrenergic tumor cells presents with mesenchymal features that are shared with plasticity models, indicating that the plasticity described in these models has relevance in neuroblastoma patients. This work therefore emphasizes that intrinsic plasticity properties of neuroblastoma cells are dependent upon external cues of the environment to drive cell identity.


Assuntos
Plasticidade Celular , Neuroblastoma , Humanos , Neuroblastoma/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral/genética
2.
Am J Hum Genet ; 110(3): 427-441, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36787739

RESUMO

Ewing sarcoma (EwS) is a rare bone and soft tissue malignancy driven by chromosomal translocations encoding chimeric transcription factors, such as EWSR1-FLI1, that bind GGAA motifs forming novel enhancers that alter nearby expression. We propose that germline microsatellite variation at the 6p25.1 EwS susceptibility locus could impact downstream gene expression and EwS biology. We performed targeted long-read sequencing of EwS blood DNA to characterize variation and genomic features important for EWSR1-FLI1 binding. We identified 50 microsatellite alleles at 6p25.1 and observed that EwS-affected individuals had longer alleles (>135 bp) with more GGAA repeats. The 6p25.1 GGAA microsatellite showed chromatin features of an EWSR1-FLI1 enhancer and regulated expression of RREB1, a transcription factor associated with RAS/MAPK signaling. RREB1 knockdown reduced proliferation and clonogenic potential and reduced expression of cell cycle and DNA replication genes. Our integrative analysis at 6p25.1 details increased binding of longer GGAA microsatellite alleles with acquired EWSR-FLI1 to promote Ewing sarcomagenesis by RREB1-mediated proliferation.


Assuntos
Neoplasias Ósseas , Sarcoma de Ewing , Humanos , Alelos , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteína Proto-Oncogênica c-fli-1/genética , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patologia
3.
Cell Rep ; 41(10): 111761, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36476851

RESUMO

Ewing sarcoma (EwS) is characterized by EWSR1-ETS fusion transcription factors converting polymorphic GGAA microsatellites (mSats) into potent neo-enhancers. Although the paucity of additional mutations makes EwS a genuine model to study principles of cooperation between dominant fusion oncogenes and neo-enhancers, this is impeded by the limited number of well-characterized models. Here we present the Ewing Sarcoma Cell Line Atlas (ESCLA), comprising whole-genome, DNA methylation, transcriptome, proteome, and chromatin immunoprecipitation sequencing (ChIP-seq) data of 18 cell lines with inducible EWSR1-ETS knockdown. The ESCLA shows hundreds of EWSR1-ETS-targets, the nature of EWSR1-ETS-preferred GGAA mSats, and putative indirect modes of EWSR1-ETS-mediated gene regulation, converging in the duality of a specific but plastic EwS signature. We identify heterogeneously regulated EWSR1-ETS-targets as potential prognostic EwS biomarkers. Our freely available ESCLA (http://r2platform.com/escla/) is a rich resource for EwS research and highlights the power of comprehensive datasets to unravel principles of heterogeneous gene regulation by chimeric transcription factors.


Assuntos
Sarcoma de Ewing , Humanos , Sarcoma de Ewing/genética , Multiômica , Oncogenes , Linhagem Celular , Fatores de Transcrição
4.
Mol Cell ; 82(13): 2458-2471.e9, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35550257

RESUMO

Many cancers are characterized by gene fusions encoding oncogenic chimeric transcription factors (TFs) such as EWS::FLI1 in Ewing sarcoma (EwS). Here, we find that EWS::FLI1 induces the robust expression of a specific set of novel spliced and polyadenylated transcripts within otherwise transcriptionally silent regions of the genome. These neogenes (NGs) are virtually undetectable in large collections of normal tissues or non-EwS tumors and can be silenced by CRISPR interference at regulatory EWS::FLI1-bound microsatellites. Ribosome profiling and proteomics further show that some NGs are translated into highly EwS-specific peptides. More generally, we show that hundreds of NGs can be detected in diverse cancers characterized by chimeric TFs. Altogether, this study identifies the transcription, processing, and translation of novel, specific, highly expressed multi-exonic transcripts from otherwise silent regions of the genome as a new activity of aberrant TFs in cancer.


Assuntos
Carcinogênese , Regulação Neoplásica da Expressão Gênica , Proteínas de Fusão Oncogênica , Proteína Proto-Oncogênica c-fli-1 , Fatores de Transcrição , Carcinogênese/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Inativação Gênica , Genoma/genética , Genômica , Humanos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Oncogenes/genética , Proteína Proto-Oncogênica c-fli-1/genética , Proteína Proto-Oncogênica c-fli-1/metabolismo , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patologia , Fatores de Transcrição/genética , Transcrição Gênica/genética
5.
Cancers (Basel) ; 14(9)2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35565457

RESUMO

Ewing sarcoma (EwS) is an aggressive primary bone cancer in children and young adults characterized by oncogenic fusions between genes encoding FET-RNA-binding proteins and ETS transcription factors, the most frequent fusion being EWSR1-FLI1. We show that EGR2, an Ewing-susceptibility gene and an essential direct target of EWSR1-FLI1, directly regulates the transcription of genes encoding key enzymes of the mevalonate (MVA) pathway. Consequently, Ewing sarcoma is one of the tumors that expresses the highest levels of mevalonate pathway genes. Moreover, genome-wide screens indicate that MVA pathway genes constitute major dependencies of Ewing cells. Accordingly, the statin inhibitors of HMG-CoA-reductase, a rate-limiting enzyme of the MVA pathway, demonstrate cytotoxicity in EwS. Statins induce increased ROS and lipid peroxidation levels, as well as decreased membrane localization of prenylated proteins, such as small GTP proteins. These metabolic effects lead to an alteration in the dynamics of S-phase progression and to apoptosis. Statin-induced effects can be rescued by downstream products of the MVA pathway. Finally, we further show that statins impair tumor growth in different Ewing PDX models. Altogether, the data show that statins, which are off-patent, well-tolerated, and inexpensive compounds, should be strongly considered in the therapeutic arsenal against this deadly childhood disease.

6.
J Pathol Clin Res ; 8(3): 217-232, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35174661

RESUMO

BCOR-ITD tumours form an emerging family of aggressive entities with an internal tandem duplication (ITD) in the last exon of the BCOR gene. The family includes cerebral tumours, termed central nervous system BCOR-ITD (CNS BCOR-ITD), and sarcomatous types described in the kidney as clear cell sarcoma of the kidney (CCSK), in the endometrium as high-grade endometrial stromal sarcoma, and in the bone and soft tissue as undifferentiated round cell sarcoma or primitive myxoid mesenchymal tumour of infancy. Based on a series of 33 retrospective cases, including 10 CNS BCOR-ITD and 23 BCOR-ITD sarcomas, we interrogated the homogeneity of the entity regarding clinical, radiological, and histopathological findings, and molecular signatures. Whole-transcriptomic sequencing and DNA methylation profiling were used for unsupervised clustering. BCOR-ITD tumours mostly affected young children with a median age at diagnosis of 2.1 years (range 0-62.4). Median overall survival was 3.9 years and progression-free survival was 1.4 years. This dismal prognosis is shared among tumours in all locations except CCSK. Histopathological review revealed marked differences between CNS BCOR-ITD and BCOR-ITD sarcomas. These two groups were consistently segregated by unsupervised clustering of expression (n = 22) and DNA methylation (n = 21) data. Proximity between the two groups may result from common somatic changes within key pathways directly related to the novel activity of the ITD itself. Conversely, comparison of gene signatures with single-cell RNA-Seq atlases suggests that the distinction between BCOR-ITD sarcomas and CNS BCOR-ITD may result from differences in cells of origin.


Assuntos
Neoplasias do Endométrio , Sarcoma , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Estudos Retrospectivos , Sarcoma/genética , Adulto Jovem
7.
Cancer Res ; 81(19): 4994-5006, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34341072

RESUMO

Ewing sarcoma is characterized by pathognomonic translocations, most frequently fusing EWSR1 with FLI1. An estimated 30% of Ewing sarcoma tumors also display genetic alterations in STAG2, TP53, or CDKN2A (SPC). Numerous attempts to develop relevant Ewing sarcoma models from primary human cells have been unsuccessful in faithfully recapitulating the phenotypic, transcriptomic, and epigenetic features of Ewing sarcoma. In this study, by engineering the t(11;22)(q24;q12) translocation together with a combination of SPC mutations, we generated a wide collection of immortalized cells (EWIma cells) tolerating EWSR1-FLI1 expression from primary mesenchymal stem cells (MSC) derived from a patient with Ewing sarcoma. Within this model, SPC alterations strongly favored Ewing sarcoma oncogenicity. Xenograft experiments with independent EWIma cells induced tumors and metastases in mice, which displayed bona fide features of Ewing sarcoma. EWIma cells presented balanced but also more complex translocation profiles mimicking chromoplexy, which is frequently observed in Ewing sarcoma and other cancers. Collectively, these results demonstrate that bone marrow-derived MSCs are a source of origin for Ewing sarcoma and also provide original experimental models to investigate Ewing sarcomagenesis. SIGNIFICANCE: These findings demonstrate that Ewing sarcoma can originate from human bone-marrow-derived mesenchymal stem cells and that recurrent mutations support EWSR1-FLI1 translocation-mediated transformation.


Assuntos
Transformação Celular Neoplásica , Suscetibilidade a Doenças , Células-Tronco Mesenquimais/metabolismo , Sarcoma de Ewing/etiologia , Sarcoma de Ewing/metabolismo , Animais , Biomarcadores , Sistemas CRISPR-Cas , Células Cultivadas , Biologia Computacional/métodos , Modelos Animais de Doenças , Edição de Genes , Perfilação da Expressão Gênica , Rearranjo Gênico , Marcação de Genes , Xenoenxertos , Humanos , Imunofenotipagem , Hibridização in Situ Fluorescente , Células-Tronco Mesenquimais/patologia , Camundongos , Mutação , Sarcoma de Ewing/patologia , Translocação Genética
8.
Nucleic Acids Res ; 49(9): 5038-5056, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34009296

RESUMO

ERG family proteins (ERG, FLI1 and FEV) are a subfamily of ETS transcription factors with key roles in physiology and development. In Ewing sarcoma, the oncogenic fusion protein EWS-FLI1 regulates both transcription and alternative splicing of pre-messenger RNAs. However, whether wild-type ERG family proteins might regulate splicing is unknown. Here, we show that wild-type ERG proteins associate with spliceosomal components, are found on nascent RNAs, and induce alternative splicing when recruited onto a reporter minigene. Transcriptomic analysis revealed that ERG and FLI1 regulate large numbers of alternative spliced exons (ASEs) enriched with RBFOX2 motifs and co-regulated by this splicing factor. ERG and FLI1 are associated with RBFOX2 via their conserved carboxy-terminal domain, which is present in EWS-FLI1. Accordingly, EWS-FLI1 is also associated with RBFOX2 and regulates ASEs enriched in RBFOX2 motifs. However, in contrast to wild-type ERG and FLI1, EWS-FLI1 often antagonizes RBFOX2 effects on exon inclusion. In particular, EWS-FLI1 reduces RBFOX2 binding to the ADD3 pre-mRNA, thus increasing its long isoform, which represses the mesenchymal phenotype of Ewing sarcoma cells. Our findings reveal a RBFOX2-mediated splicing regulatory function of wild-type ERG family proteins, that is altered in EWS-FLI1 and contributes to the Ewing sarcoma cell phenotype.


Assuntos
Processamento Alternativo , Proteínas de Fusão Oncogênica/metabolismo , Proteína Proto-Oncogênica c-fli-1/metabolismo , Fatores de Processamento de RNA/metabolismo , Proteína EWS de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Ligação a Calmodulina/genética , Proteínas de Ligação a Calmodulina/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Células HeLa , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Domínios Proteicos , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Regulador Transcricional ERG/química , Regulador Transcricional ERG/metabolismo
9.
Cancer Cell ; 39(6): 810-826.e9, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33930311

RESUMO

STAG2, a cohesin family gene, is among the most recurrently mutated genes in cancer. STAG2 loss of function (LOF) is associated with aggressive behavior in Ewing sarcoma, a childhood cancer driven by aberrant transcription induced by the EWSR1-FLI1 fusion oncogene. Here, using isogenic Ewing cells, we show that, while STAG2 LOF profoundly changes the transcriptome, it does not significantly impact EWSR1-FLI1, CTCF/cohesin, or acetylated H3K27 DNA binding patterns. In contrast, it strongly alters the anchored dynamic loop extrusion process at boundary CTCF sites and dramatically decreases promoter-enhancer interactions, particularly affecting the expression of genes regulated by EWSR1-FLI1 at GGAA microsatellite neo-enhancers. Down-modulation of cis-mediated EWSR1-FLI1 activity, observed in STAG2-LOF conditions, is associated with enhanced migration and invasion properties of Ewing cells previously observed in EWSR1-FLI1low cells. Our study illuminates a process whereby STAG2-LOF fine-tunes the activity of an oncogenic transcription factor through altered CTCF-anchored loop extrusion and cis-mediated enhancer mechanisms.


Assuntos
Neoplasias Ósseas/genética , Fator de Ligação a CCCTC/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Fusão Oncogênica/genética , Sarcoma de Ewing/genética , Neoplasias Ósseas/mortalidade , Neoplasias Ósseas/patologia , Fator de Ligação a CCCTC/química , Fator de Ligação a CCCTC/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Imunoprecipitação da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Humanos , Mutação com Perda de Função , Lisina/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Regiões Promotoras Genéticas , Sarcoma de Ewing/mortalidade , Sarcoma de Ewing/patologia , Coesinas
10.
Cell Rep ; 30(6): 1767-1779.e6, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32049009

RESUMO

EWSR1-FLI1, the chimeric oncogene specific for Ewing sarcoma (EwS), induces a cascade of signaling events leading to cell transformation. However, it remains elusive how genetically homogeneous EwS cells can drive the heterogeneity of transcriptional programs. Here, we combine independent component analysis of single-cell RNA sequencing data from diverse cell types and model systems with time-resolved mapping of EWSR1-FLI1 binding sites and of open chromatin regions to characterize dynamic cellular processes associated with EWSR1-FLI1 activity. We thus define an exquisitely specific and direct enhancer-driven EWSR1-FLI1 program. In EwS tumors, cell proliferation and strong oxidative phosphorylation metabolism are associated with a well-defined range of EWSR1-FLI1 activity. In contrast, a subpopulation of cells from below and above the intermediary EWSR1-FLI1 activity is characterized by increased hypoxia. Overall, our study reveals sources of intratumoral heterogeneity within EwS tumors.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Proteína EWS de Ligação a RNA/metabolismo , Sarcoma de Ewing/genética , Transcrição Gênica/genética , Linhagem Celular Tumoral , Humanos , Transdução de Sinais
11.
Nat Commun ; 10(1): 4128, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31511524

RESUMO

Pediatric malignancies including Ewing sarcoma (EwS) feature a paucity of somatic alterations except for pathognomonic driver-mutations that cannot explain overt variations in clinical outcome. Here, we demonstrate in EwS how cooperation of dominant oncogenes and regulatory germline variants determine tumor growth, patient survival and drug response. Binding of the oncogenic EWSR1-FLI1 fusion transcription factor to a polymorphic enhancer-like DNA element controls expression of the transcription factor MYBL2 mediating these phenotypes. Whole-genome and RNA sequencing reveals that variability at this locus is inherited via the germline and is associated with variable inter-tumoral MYBL2 expression. High MYBL2 levels sensitize EwS cells for inhibition of its upstream activating kinase CDK2 in vitro and in vivo, suggesting MYBL2 as a putative biomarker for anti-CDK2-therapy. Collectively, we establish cooperation of somatic mutations and regulatory germline variants as a major determinant of tumor progression and highlight the importance of integrating the regulatory genome in precision medicine.


Assuntos
Mutação em Linhagem Germinativa/genética , Neoplasias/genética , Neoplasias/terapia , Animais , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Repetições de Microssatélites/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Fenótipo , Polimorfismo Genético , Transativadores , Resultado do Tratamento , Regulação para Cima/genética
12.
PLoS Genet ; 7(8): e1002230, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21876677

RESUMO

Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38-39 Mb genomes include 11,860-14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared to <1% of B. cinerea. The arsenal of genes associated with necrotrophic processes is similar between the species, including genes involved in plant cell wall degradation and oxalic acid production. Analysis of secondary metabolism gene clusters revealed an expansion in number and diversity of B. cinerea-specific secondary metabolites relative to S. sclerotiorum. The potential diversity in secondary metabolism might be involved in adaptation to specific ecological niches. Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea. The organization of the mating-type loci differs, and their structures provide evidence for the evolution of heterothallism from homothallism. These data shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating. This resource should facilitate the functional studies designed to better understand what makes these fungi such successful and persistent pathogens of agronomic crops.


Assuntos
Ascomicetos/genética , Botrytis/genética , Genoma Fúngico , Doenças das Plantas/microbiologia , Elementos de DNA Transponíveis , Genes Fúngicos , Genômica , Filogenia , Doenças das Plantas/genética , Sintenia
13.
Fungal Biol ; 114(9): 766-77, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20943186

RESUMO

Reactive Oxygen Species (ROS) are involved in plant biomass degradation by fungi and development of fungal structures. While the ROS-generating NADPH oxidases from filamentous fungi are under strong scrutiny, much less is known about the related integral Membrane (or Ferric) Reductases (IMRs). Here, we present a survey of these enzymes in 29 fungal genomes covering the entire available range of fungal diversity. IMRs are present in all fungal genomes. They can be classified into at least 24 families, underscoring the high diversity of these enzymes. Some are differentially regulated during colony or fruiting body development, as well as by the nature of the carbon source of the growth medium. Importantly, functional characterization of IMRs has been made on proteins belonging to only two families, while nothing or very little is known about the proteins of the other 22 families.


Assuntos
FMN Redutase/genética , Proteínas Fúngicas/genética , Fungos/enzimologia , Família Multigênica , NADPH Oxidases/genética , FMN Redutase/metabolismo , Proteínas Fúngicas/metabolismo , Fungos/classificação , Fungos/genética , Genoma Fúngico , Dados de Sequência Molecular , NADPH Oxidases/metabolismo , Filogenia
14.
BMC Genomics ; 11: 81, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20122162

RESUMO

BACKGROUND: More and more completely sequenced fungal genomes are becoming available and many more sequencing projects are in progress. This deluge of data should improve our knowledge of the various primary and secondary metabolisms of Fungi, including their synthesis of useful compounds such as antibiotics or toxic molecules such as mycotoxins. Functional annotation of many fungal genomes is imperfect, especially of genes encoding enzymes, so we need dedicated tools to analyze their metabolic pathways in depth. DESCRIPTION: FUNGIpath is a new tool built using a two-stage approach. Groups of orthologous proteins predicted using complementary methods of detection were collected in a relational database. Each group was further mapped on to steps in the metabolic pathways published in the public databases KEGG and MetaCyc. As a result, FUNGIpath allows the primary and secondary metabolisms of the different fungal species represented in the database to be compared easily, making it possible to assess the level of specificity of various pathways at different taxonomic distances. It is freely accessible at http://www.fungipath.u-psud.fr. CONCLUSIONS: As more and more fungal genomes are expected to be sequenced during the coming years, FUNGIpath should help progressively to reconstruct the ancestral primary and secondary metabolisms of the main branches of the fungal tree of life and to elucidate the evolution of these ancestral fungal metabolisms to various specific derived metabolisms.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Proteínas , Genoma Fúngico , Redes e Vias Metabólicas , Mineração de Dados , Fungos/genética
15.
Genome Biol ; 9(5): R77, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18460219

RESUMO

BACKGROUND: The dung-inhabiting ascomycete fungus Podospora anserina is a model used to study various aspects of eukaryotic and fungal biology, such as ageing, prions and sexual development. RESULTS: We present a 10X draft sequence of P. anserina genome, linked to the sequences of a large expressed sequence tag collection. Similar to higher eukaryotes, the P. anserina transcription/splicing machinery generates numerous non-conventional transcripts. Comparison of the P. anserina genome and orthologous gene set with the one of its close relatives, Neurospora crassa, shows that synteny is poorly conserved, the main result of evolution being gene shuffling in the same chromosome. The P. anserina genome contains fewer repeated sequences and has evolved new genes by duplication since its separation from N. crassa, despite the presence of the repeat induced point mutation mechanism that mutates duplicated sequences. We also provide evidence that frequent gene loss took place in the lineages leading to P. anserina and N. crassa. P. anserina contains a large and highly specialized set of genes involved in utilization of natural carbon sources commonly found in its natural biotope. It includes genes potentially involved in lignin degradation and efficient cellulose breakdown. CONCLUSION: The features of the P. anserina genome indicate a highly dynamic evolution since the divergence of P. anserina and N. crassa, leading to the ability of the former to use specific complex carbon sources that match its needs in its natural biotope.


Assuntos
Evolução Molecular , Genoma Fúngico , Podospora/genética , Sequência de Bases , Carbono/metabolismo , Etiquetas de Sequências Expressas , Duplicação Gênica , Dados de Sequência Molecular , Neurospora crassa/genética , Podospora/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...